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Abstract We consider finite-range lattice models on Cayley trees with two basic properties:
the existence of only a finite number of ground states and with a Peierls type condition. We
define the notion of a contour for the model on the Cayley tree. By a contour argument we
show the existence of s different (where s is the number of ground states) Gibbs measures.
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1 Introduction

This paper is a continuation of our previous papers [24–26] devoted to the introduction of
a contour method on Cayley trees (Bethe lattices [1]). Lattice systems are widely studied in
statistical mechanics; some of them are physically quite realistic, others, such as models on
trees, serve as simplifications.

One of the key problems related to lattice spin systems is the description of the set of
Gibbs measures. The structure of the lattice plays an important role in the investigations of
spin systems. For example in order to study the phase transition problem (non-uniqueness
of Gibbs measure) for a system on Zd and on Cayley trees, respectively, there are two main
methods: the contour method (Pirogov–Sinai theory) on Zd (see e.g. [2, 5, 7, 17, 21–23, 30,
32, 33]) and Markov random field theory on Cayley trees (see e.g. [3, 4, 8–11, 15, 27–29,
31]).

In the Pirogov–Sinai theory configurations can be described by contours which satisfy
a Peierls condition. This theory provides tools for a very detailed knowledge of the struc-
ture of Gibbs measures in a region in the relevant space of parameters (see e.g. [30]). The
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Pirogov–Sinai theory is a low temperature expansion which enables to control the entropic
fluctuations from the ground states, its natural setup being the lattice systems. But the theory
is not limited to such cases and it has been applied to a great variety of situations, covering
various types of phase transitions (see e.g. [6] for details).

Note that Pirogov–Sinai theory is not simply applicable on Cayley trees and not much
work has been done to develop contour methods on trees [24–26]. However studying models
with interaction radius r ≥ 2 on Cayley trees to describe Gibbs measures by the (above-
mentioned) method of Markov random field theory becomes difficult, since in this case
there appears a set of nonlinear equations which can not solved analytically. To avoid this
problem it looks very useful to develop a contour method (Pirogov–Sinai theory) on Cayley
trees.

This paper presents a contour method for a general model with a finite interaction radius
r (1 ≤ r < ∞) and with a finite number of ground states with minimal energy density on the
Cayley tree of order k ≥ 2. For k = 1 this method was developed in [25] for a model with
nonhomogeneous nearest-neighbor interactions.

The paper is organized as follows. In Sect. 2 we give all necessary definitions (Cayley
tree, model, Gibbs measure etc). In Sect. 3 under some assumptions on the model (Assump-
tions A1–A3) we prove the Peierls condition. Section 4 is devoted to definition and prop-
erties of contours on Cayley trees. In Sect. 5 by a contour argument we show the existence
of s different (where s is the number of ground states) Gibbs measures for the model under
consideration on the Cayley tree of order k ≥ 2. In Sect. 6 we check our assumptions A1–A3
for several examples of models. In the last section we give a discussion about the difference
between what the results are on trees, as opposed to amenable lattices.

2 Definitions

2.1 The Cayley Tree

The Cayley tree �k (see [1]) of order k ≥ 1 is an infinite tree, i.e., a graph without cycles,
from each vertex of which exactly k + 1 edges issue. Let �k = (V ,L, i) , where V is the
set of vertices of �k , L is the set of edges of �k and i is the incidence function associating
each edge l ∈ L with its endpoints x, y ∈ V . If i(l) = {x, y}, then x and y are called nearest
neighboring vertices, and we write l = 〈x, y〉.

The distance d(x, y), x, y ∈ V on the Cayley tree is defined by the formula

d(x, y) = min{d | ∃x = x0, x1, . . . , xd−1, xd = y ∈ V such that 〈x0, x1〉, . . . , 〈xd−1, xd〉}.
For a fixed x0 ∈ V we set Wn = {x ∈ V | d(x, x0) = n},

Vn = {x ∈ V | d(x, x0) ≤ n}, Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn}.
Denote |x| = d(x, x0), x ∈ V .

It is known (see e.g. [9]) that there exists a one-to-one correspondence between the set
V of vertices of the Cayley tree of order k ≥ 1 and the group Gk of the free products of
k + 1 cyclic groups {e, ai}, i = 1, . . . , k + 1 of the second order (i.e. a2

i = e, a−1
i = ai ) with

generators a1, a2, . . . , ak+1.
Let us define a graph structure on Gk as follows. Vertices which correspond to the

“words” g,h ∈ Gk are called nearest neighbors if either g = hai or h = gaj for some i

or j . The graph thus defined is a Cayley tree of order k.
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For g0 ∈ Gk a left (resp. right) transformation shift on Gk is defined by

Fg0h = g0h (resp. Fg0h = hg0) ∀h ∈ Gk.

It is easy to see that the set of all left (resp. right) shifts on Gk is isomorphic to Gk .

2.2 Configuration Space and the Model

For A ⊆ V a spin configuration σA on A is defined as a function x ∈ A → σA(x) ∈ � =
{1,2, . . . , q}; the set of all configurations coincides with �A = �A. We denote � = �V and
σ = σV . Also we define a periodic configuration as a configuration σ ∈ � which is invariant
under a subgroup of shifts G∗

k ⊂ Gk of finite index.
More precisely, a configuration σ ∈ � is called G∗

k -periodic if σ(Fyx) = σ(x) for any
x ∈ Gk and y ∈ G∗

k .

For a given periodic configuration the index of the subgroup is called the period of
the configuration. A configuration that is invariant with respect to all shifts is called
translational-invariant.

The energy of the configuration σ ∈ � is given by the formal Hamiltonian

H(σ) =
∑

A⊂V :
diam(A)≤r

I (σA) (2.1)

where r ∈ N = {1,2, . . .}, diam(A) = maxx,y∈A d(x, y), I (σA) : �A → R is a given transla-
tion invariant potential i.e. I (σA) = I (σFyA) for any y ∈ Gk . Here σFyA = {σ(Fyx), x ∈ A}.

Fix r ∈ N and put r ′ = [ r+1
2 ], where [a] is the integer part of a. Denote by Mr the set of

all balls br(x) = {y ∈ V : d(x, y) ≤ r ′} with radius r ′ i.e.

Mr = {br(x) : x ∈ V }.
For A ⊂ V with diam(A) ≤ r denote

n(A) = |{b ∈ Mr : A ⊂ b}|,
where |A| stands for the number of elements of a set A.

The Hamiltonian (2.1) can be written as

H(σ) =
∑

b∈Mr

U(σb), (2.2)

where U(σb) = ∑
A⊂b

I (σA)

n(A)
.

For a finite domain D ⊂ V with the boundary condition ϕDc given on its complement
Dc = V \ D, the conditional Hamiltonian is

H(σD | ϕDc) =
∑

b∈Mr :
b∩D �=∅

U(σb), (2.3)

where

σb(x) =
{

σ(x) if x ∈ b ∩ D,

ϕ(x) if x ∈ b ∩ Dc.
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2.3 The Ground State

A ground state of (2.2) is a configuration ϕ in �k whose energy cannot be lowered by
changing ϕ in some local region. We assume that (2.2) has a finite number of translation-
periodic (i.e. invariant under the action of some subgroup of Gk of finite index) ground
states. By a standard trick of partitioning the tree into disjoint sets Q(x) centered at x ∈ G∗

k

(the corresponding subgroup of finite index) and enlarging the spin space from � to �Q

one can transform the model above into a model with only translation-invariant or non-
periodic ground states. Such a transformation was considered in [14] for models on Zd.

Hence, without loss of generality, we assume translation-invariance instead of translation-
periodicity and we permute the spins so that the set of ground states of the model be GS =
GS(H) = {σ (i), i = 1,2, . . . , s},1 ≤ s ≤ q with σ (i)(x) = i for any x ∈ V.

2.4 Gibbs Measure

We consider a standard sigma-algebra B of subsets of � generated by cylinder subsets; all
probability measures are considered on (�,B). A probability measure μ is called a Gibbs
measure (with Hamiltonian H ) if it satisfies the DLR equation: ∀ n = 1,2, . . . and σn ∈ �Vn :

μ({σ ∈ � : σ |Vn= σn}) =
∫

�

μ(dω)νVn
ϕ (σn), (2.4)

where νVn
ϕ is the conditional probability:

νVn
ϕ (σn) = 1

Zn,ϕ

exp(−βH(σn | ϕV c
n
)). (2.5)

Here β = 1
T

, T > 0—temperature and Zn,ϕ stands for the partition function in Vn, with the
boundary condition ϕ:

Zn,ϕ =
∑

σ̃n∈�Vn

exp(−βH (̃σn | ϕV c
n
)). (2.6)

3 The Peierls Condition

Denote by U the set of all possible values of U(σb) for any configuration σb, b ∈ Mr. Since
r < +∞ we have |U| < +∞. Put Umin = min{U : U ∈ U} and

λ0 = min{U \ {U ∈ U : U = Umin}} − Umin. (3.1)

The important assumptions of this paper are the following:

Assumption A1 The set of all ground states is GS = {σ (i), i = 1,2, . . . , s},1 ≤ s ≤ q.

Assumption A2 λ0 > 0.

Assumption A3 Each ϕ ∈ GS satisfies

U(ϕb) = Umin for every b ∈ Mr. (3.2)
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Remark If a configuration σ satisfies (3.2) i.e. U(σb) = Umin for ∀b ∈ Mr then it is a ground
state. Moreover for Hamiltonians on Zd it is well known that a configuration is a ground state
if and only if the condition (3.2) is satisfied (see e.g. [30]). But such a fact is not true for
Hamiltonians on the Cayley tree, since the tree is a non-amenable graph i.e. inf{ |boundary ofW |

|W | :
W ⊂ V,0 < |W | < ∞} > 0 for k ≥ 2 (see e.g. [1, 12]).

The relative Hamiltonian is defined by

H(σ,ϕ) =
∑

b∈Mr

(U(σb) − U(ϕb)).

Definition 3.1 Let GS be the complete set of all ground states of the relative Hamil-
tonian H . A ball b ∈ Mr is said to be an improper ball of the configuration σ if σb �= ϕb

for any ϕ ∈ GS. The union of the improper balls of a configuration σ is called the boundary
of the configuration and denoted by ∂(σ ).

Definition 3.2 The relative Hamiltonian H with the set of ground states GS satisfies the
Peierls condition if for any ϕ ∈ GS and any configuration σ coinciding almost everywhere
with ϕ (i.e. |{x ∈ V : σ(x) �= ϕ(x)}| < ∞)

H(σ,ϕ) ≥ λ|∂(σ )|,
where λ is a positive constant which does not depend on σ , and |∂(σ )| is the number of balls
in ∂(σ ).

Theorem 3.3 If assumptions A1–A3 are satisfied then the Peierls condition holds.

Proof Suppose σ coincides almost everywhere with a ground state ϕ ∈ GS then we have
U(σb) − Umin ≥ λ0 for any b ∈ ∂(σ ) since ϕ is a ground state. Thus

H(σ,ϕ) =
∑

b∈Mr

(U(σb) − U(ϕb)) =
∑

b∈∂(σ )

(U(σb) − Umin) ≥ λ0|∂(σ )|.

Therefore, the Peierls condition is satisfied for λ = λ0. The theorem is proved. �

4 Contours on Cayley Tree

Let � ⊂ V be a finite set. Let σ
(i)

�c ≡ i, i = 1, . . . , s be a constant configuration outside of �.

For each i we extend the configuration σ� inside � to the entire tree by the ith constant
configuration and denote it by σ

(i)
� . The set of such configurations we denote by �

(i)
� .

Now we are going to recall a construction of the subcontours (see [24]). Note that our
definition (see Definition 4.3 below) of a contour depends on r , at r = 1 we get a contour
defined in [24]. But the definition of a subcontour does not depend on r.

Consider Vn and for a given configuration σ
(i)
� ∈ �

(i)
� denote V

(j)
n ≡ V

(j)
n (σ

(i)
� ) =

{t ∈ Vn : σ (i)
� (t) = j}, j = 1, . . . , q, j �= i. Let Gn,j = (V

(j)
n ,L

(j)
n ) be a graph such that

L(j)
n = {l = 〈x, y〉 ∈ L : x, y ∈ V (j)

n }, j = 1, . . . , q, j �= i.

It is clear, that for a fixed n the graph Gn,j contains a finite number (= m) of maximal
connected subgraphs G

n,j
p i.e.

Gn,j = {Gn,j

1 , . . . ,Gn,j
m }, Gn,j

p = (V (j)
n,p,L(j)

n,p), p = 1, . . . ,m; j �= i.
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Here V
(j)
n,p and L

(j)
n,p are the set of vertexes and edges of G

n,j
p , respectively.

Two edges l1, l2 ∈ L (l1 �= l2) are called nearest neighboring edges if |i(l1) ∩ i(l2)| = 1,
and we write 〈l1, l2〉1.

For any subgraph K ⊂ �k denote by E(K) the set of edges, by V (K) the set of vertices
of K and

B(K) = {l ∈ L \ E(K) : ∃l1 ∈ E(K) such that 〈l, l1〉1}.

Definition 4.1 An edge l = 〈x, y〉 ∈ Ln+1 is called a boundary edge of the configuration
σ

(i)
Vn

if σ
(i)
Vn

(x) �= σ
(i)
Vn

(y).

The set of boundary edges of σ
(i)
Vn

is called edge boundary ∂1(σ
(i)
Vn

) ≡ ∂1 of the configura-
tion.

The (finite) set B(G
n,j
p ), j = 1, . . . , q , j �= i,p = 1, . . . ,m (together with a given config-

uration on it) is called subcontour of the boundary ∂1.

The set V
(j)
n,p , j = 1, . . . , q , j �= i,p = 1, . . . ,m is called interior of B(G

n,j
p ), and is

denoted by IntB(G
n,j
p ). The set of edges from a subcontour T is denoted by suppT . The

configuration σ
(i)
Vn

takes the same value j at all points of the connected component G
n,j
p .

This value v = v(G
n,j
p ) is called the mark of the subcontour and denoted by v(T ), where

T = B(G
n,j
p ).

The collection of subcontours τ = τ(σ
(i)
Vn

) = {Tp} generated by the edge boundary ∂1 =
∂1(σ

(i)
Vn

) of σ
(i)
Vn

has the following properties

(a) Every subcontour T ∈ τ lies inside the set Vn+1.

(b) For every two subcontours T1, T2 ∈ τ their supports suppT1 and suppT2 satisfy
|suppT1 ∩ suppT2| ∈ {0,1}.

(c) For any two subcontours T1, T2 ∈ τ with |suppT1 ∩ suppT2| = 1 we have v(T1) �= v(T2).

The distance dist(T1, T2) is defined by

dist(T1, T2) = min
x∈V (T1)
y∈V (T2)

d(x, y),

where d(x, y) is the distance between x, y ∈ V (see Sect. 2.1).
Recall r ′ = [ r+1

2 ].

Definition 4.2 The subcontours T1, T2 are called adjacent if dist(T1, T2) ≤ 2(r ′ − 1). A set
of subcontours A is called connected if for any two subcontours T1, T2 ∈ A there is a col-
lection of subcontours T1 = T̃1, T̃2, . . . , T̃l = T2 in A such that for each i = 1, . . . , l − 1 the
subcontours T̃i and T̃i+1 are adjacent.

Definition 4.3 Any maximal connected set (component) of subcontours (with given marks)
is called a contour of the set ∂1.

For contour γ = {Tp} denote Intγ = ⋃
p IntTp.

Remarks

1. Note that Definition 4.3 of contours coincides with the Definition 2 of [24] for r = 1. But
Definition 4.3 is better than the corresponding Definition 11 of [26] for r = 2. Because
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for r = 2 from Definition 4.2 we have dist(T1, T2) = 0 i.e. the subcontours do not interact
if the distance between them is ≥ 1 but in [26] the condition was like dist(T1, T2) ≤ 2.

2. Our definition of a contour is slightly different from the definition of contour of Hamilto-
nians on Zd, d ≥ 2 (see [22, 23, 30]). For any two contours γ, γ ′ we have dist(γ, γ ′) >

2(r ′ − 1). Thus our contours do not interact. This means that for any σ ∈ � there is
no a ball b ∈ ∂(σ ) with b ∩ γ �= ∅ and b ∩ γ ′ �= ∅. Such property allows as to use a
contour-removal operation. This operation is similar to the one in the ordinary Peierls
argument [7]: Given a family of contours defining a configuration σ ∈ �

(i)
� , the family

obtained by omitting one of them is also the family of contours of a (different) config-
uration in �

(i)
� . There is an algorithm of the contour-removal operation to obtain a new

configuration as follows. Take the configuration σ and change all the spins in the interior
of γ (which must be removed) to value i. This makes γ disappear, but leaves intact the
other contours.

For a given (sub)contour γ denote

impγ = {b ∈ ∂ : b ∩ γ �= ∅}, |γ | = |impγ |.
By construction we have impγ ∩ impγ ′ = ∅ for any contours γ �= γ ′.
For A ⊂ V denote

C(A) = {b ∈ Mr : b ∩ A �= ∅},
D(A) = {x ∈ V \ A : ∃y ∈ A, such that 〈x, y〉}.

Lemma 4.4 Let K be a connected subgraph of the Cayley tree �k of order k ≥ 2, such that
|V (K)| = n, then

(i) |D(V (K))| = (k − 1)n + 2.

(ii) |C(V (K))| = kr ′−1((k − 1)n + 2).

Proof (i) We shall use induction over n. For n = 1 and 2 the assertion is trivial. Assume for
n = m the lemma is true i.e. from |V (K)| = m follows that |D(V (K))| = (k − 1)m + 2. We
shall prove the assertion for n = m + 1 i.e. for K̃ = K ∪ {x}. Since K̃ is connected graph
we have x ∈ D(V (K)) and there is a unique y ∈ S1(x) = {u ∈ V : d(x,u) = 1} such that
y ∈ V (K). Thus D(V (K̃)) = (D(V (K)) \ {x}) ∪ (S1(x) \ {y}). Consequently,

|D(V (K̃))| = |D(V (K))| − 1 + k = (k − 1)(m + 1) + 2.

(ii) Using (i) we obtain |C(V (K))| = ur ′ , where ur ′ is the last term of the collection
u1, u2, . . . , ur ′ which is defined by the following recurrent relations

ul = 2 + (k − 1)

l−1∑

i=0

ui, l = 1,2, . . . , r ′, u0 = n. (4.1)

Iterating (4.1) we get u1 = (k −1)n+2, u2 = k((k −1)n+2), then using the induction over
l we obtain ul = kl−1((k − 1)n + 2). This completes the proof. �

Let us define a graph structure on Mr as follows. Two balls b, b′ ∈ Mr are connected by
an edge if their centers are nearest neighbors. Denote this graph by G(Mr). Note that the
graph G(Mr) is a Cayley tree of order k ≥ 1. Here the vertices of this graph are balls of Mr.

Thus Lemma 1.2 of [5] can be reformulated as follows
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Lemma 4.5 Let Ñn,G(x) be the number of connected subgraphs G′ ⊂ G(Mr) with x ∈
V (G′) and |V (G′)| = n. Then

Ñn,G(x) ≤ (ek)n.

For x ∈ V we will write x ∈ γ if x ∈ V (γ ).

Denote Nl(x) = |{γ : x ∈ γ, |γ | = l}|, where as before |γ | = |impγ |.

Lemma 4.6 If k ≥ 2 then

Nl(x) ≤ C0θ
l, (4.2)

where C0 = 1 + k+1
k−1 (kr ′ − 1), θ = θ(k, r) = (2ek)2(k+1)(r ′−1)kr′−1+2.

Proof Denote by Kγ the minimal connected subgraph of �k, which contains a contour
γ = {γ1, . . . , γm},m ≥ 1, where γi is subcontour. Put

M−
r,γ = {x ∈ Intγ : dist(x,V \ Intγ ) > r ′},

M0
r,γ = {x ∈ Intγ : dist(x,V \ Intγ ) ≤ r ′},

M+
r,γ = {x ∈ V \ Intγ : dist(x, Intγ ) ≤ r ′},
Yγ = V (Kγ ) \ (Intγ ∪ D(Intγ )).

We have

|γ | = |M0
r,γ | + |M+

r,γ |,
(4.3)

|C(V (Kγ ))| ≤ |M−
r,γ | + |γ | + |C(Yγ )|.

For any k ≥ 2, r ≥ 1 by Lemma 4.4 we have

|M−
r,γ | = |D(M−

r,γ )| − 2

k − 1
< |D(M−

r,γ )| ≤ |M0
r,γ | < |γ |. (4.4)

Note that 0 ≤ |Yγ | ≤ 2(m − 1)(r ′ − 1). Thus

|C(Yγ )| ≤ 2(m − 1)(r ′ − 1)|C({y})|, (4.5)

where y is an arbitrary point of Yγ . By Lemma 4.4 we have |C({y})| = kr ′−1(k + 1) since
|V ({y})| = 1. Hence from (4.3–4.5) we get

|C(V (Kγ ))| < 2|γ | + 2(m − 1)(r ′ − 1)(k + 1)kr ′−1. (4.6)

Since γ contains m subcontours we have m < |γ |. A combinatorial calculations show that

Nl(x) ≤ C0

l∑

m=1

(
2l + 2kr ′−1(k + 1)(r ′ − 1)(m − 1)

l

)
Ñ2l+2kr′−1(k+1)(r ′−1)(m−1),�k (bx),

(4.7)
where Ñl,�k is defined in Lemma 4.5 and bx is a ball b ∈ Mr such that x ∈ b. Using inequality(
n

l

) ≤ 2n−1, l ≤ n and Lemma 4.5 from (4.7) we get (4.2). The lemma is proved. �
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5 Non-uniqueness of Gibbs Measure

For σn ∈ �
(i)
Vn

the conditional Hamiltonian (2.3) has the form

H(i)(σn) ≡ H(σn | σV c
n

= i) =
∑

b∈Mr :
b∩Vn �=∅

U(σn,b)

=
∑

b∈∂(σn)

(U(σn,b) − Umin) + |C(Vn)|Umin, (5.1)

where σn,b = (σn)b.

The Gibbs measure on the space �
(i)
Vn

with boundary condition σ (i) is defined as

μ
(i)
n,β(σn) = Z−1

n,i exp(−βH(i)(σn)), (5.2)

where Zn,i is the normalizing factor.
Let us consider a sequence of balls on �k

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · ,
⋃

Vn = V,

and s sequences of boundary conditions outside these balls:

σ (i)
n ≡ i, n = 1,2, . . . , i = 1, . . . , s.

By very similar argument as in the proof of Lemma 9.2 in [17] one can prove that each of
the s sequences of measures {μ(i)

n,β, n = 1,2, . . .}, i = 1, . . . , s contains a convergent subse-
quence.

We denote the corresponding limits by μ
(i)
β , i = 1, . . . , s. Our purpose is to show for a

sufficiently large β these measures are different.

Lemma 5.1 Suppose assumptions A1–A3 are satisfied. Let γ be a fixed contour and
pi(γ ) = μ

(i)
β (σn : γ ∈ ∂(σn)). Then

pi(γ ) ≤ exp{−βλ0|γ |}, (5.3)

where λ0 is defined by formula (3.1).

Proof Put �γ = {σn ∈ �
(i)
Vn

: γ ⊂ ∂(σn)}, �0
γ = {σn : γ ∩ ∂ = ∅} and define a (contour-

removal) map χγ : �γ → �0
γ by

χγ (σn)(x) =
{

i if x ∈ Intγ,

σn(x) if x /∈ Intγ.

When γ is fixed then the configuration on Intγ also fixed. Therefore the map χγ is
one-to-one map. For any σn ∈ �

(i)
Vn

we have

|∂(σn)| = |∂(χγ (σn))| + |γ |.
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Consequently, using (5.1) one finds

pi(γ ) =
∑

σn∈�γ
exp{−β

∑
b∈∂(σn)(U(σn,b) − Umin)}

∑
σ̃n

exp{−β
∑

b∈∂(σ̃n)(U(σ̃n,b) − Umin)}

≤
∑

σn∈�γ
exp{−β

∑
b∈∂(σn)(U(σn,b) − Umin)}

∑
σ̃n∈�0

γ
exp{−β

∑
b∈∂(σ̃n)(U(σ̃n,b) − Umin)}

=
∑

σn∈�γ
exp{−β

∑
b∈∂(σn)(U(σn,b) − Umin)}

∑
σ̃n∈�γ

exp{−β
∑

b∈∂(χγ (σ̃n))(U(χγ (σ̃n,b)) − Umin)} . (5.4)

Since σn,b = χγ (σn,b), for any b ∈ ∂(σn) \ impγ we have
∑

b∈∂(σn)

(U(σn,b) − Umin) = S1 + S2, (5.5)

where S1 = ∑
b∈∂(χγ (σn))(U(σn,b) − Umin); S2 = ∑

b∈impγ (U(σn,b) − Umin).

By our construction γ is a contour of ∂(σn) iff σn(x) = i for any x ∈ M+
r,γ . Consequently,

impγ does not depend on σn ∈ �γ . By assumptions A1–A3 we have U(σn,b)−Umin ≥ λ0 >

0, for any b ∈ impγ.

Hence

S2 =
∑

b∈impγ

(U(σn,b) − Umin) ≥ λ0|γ |, for any σn ∈ �γ . (5.6)

Thus from (5.4–5.6) one gets (5.3). The lemma is proved. �

Now using Lemmas 4.6 and 5.1 by a very similar argument as in [24] one can prove the
following

Lemma 5.2 If assumptions A1–A3 are satisfied then for fixed x ∈ � uniformly in � the
following relation holds

μ
(i)
β (σ� : σ(x) = j) → 0, j �= i as β → ∞.

This lemma implies the main result, i.e.

Theorem 5.3 If A1–A3 are satisfied then for all sufficiently large β there are at least s

(= number of ground states) Gibbs measures for the model (2.2) on Cayley tree of order
k ≥ 2.

6 Examples

In this section we shall give several examples with the properties A1–A3.

6.1 q-Component Models

Note that under some suitable conditions on the parameters of q-component models (with
nearest neighbor interactions) on Cayley trees (see [24]) the assumptions A1–A3 are satis-
fied. In particular, the ferromagnetic Ising, Potts and SOS (solid on solid, see [29] for details)
models have the properties A1–A3.
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Note that the Ising model in a small positive field is an example where the minus state is
a ground state with non-minimal energy density. This is a model which violates assumption
A3 (when the external field is positive).

6.2 The Potts Model with Competing Interactions (k = 2, q = 3)

Consider the Hamiltonian

H(σ) = J1

∑

〈x,y〉,
x,y∈V

δσ(x)σ (y) + J2

∑

x,y∈V :
d(x,y)=2

δσ(x)σ (y), (6.1)

where J = (J1, J2) ∈ R2, σ(x) ∈ � = {1,2, . . . , q} and δ is the Kronecker’s symbol i.e.

δuv =
{

1 if u = v,

0 if u �= v.

Note that the Ising model with competing interactions (see [26]) is a particular case of
the model (6.1). For the model (6.1) with k = 2, q = 3 we put

U(σb) ≡ U(σb, J ) = 1

2
J1

∑

〈x,y〉,
x,y∈b

δσ(x)σ (y) + J2

∑

x,y∈b:
d(x,y)=2

δσ(x)σ (y). (6.2)

Simple calculations show that

U = {U(σb)} =
{

3

2
J1 + 3J2, J1 + J2, 3J2,

1

2
J1, J2,

1

2
J1 + J2

}
.

By similar argument of [26] (pp. 221–223) one can show that for the model (6.1) the as-
sumptions A1–A3 are satisfied if J ∈ {J ∈ R2 : J1 < 0, J1 + 4J2 < 0}.

6.3 A Model with Interaction Radius r ≥ 1

For A ⊂ V let us define a generalized Kronecker symbol as the function U0(σA) : �A →
{|A| − 1, |A| − 2, . . . , |A| − min{|A|, |�|}} by

U0(σA) = |A| − |σA ∩ �|, (6.3)

where as before � = {1,2, . . . , q} and |σA ∩ �| is the number of different values of
σA(x), x ∈ A. For instance if σA is a constant configuration then |σA ∩ �| = 1.

Note that if |A| = 2, say, A = {x, y}, then U0({σ(x), σ (y)}) = δσ(x)σ (y).

Now consider the Hamiltonian

H(σ) = −J
∑

b∈Mr

U0(σb), (6.4)

where J ∈ R.

It is easy to see that if J > 0 then the assumptions A1–A3 are satisfied for any r ≥ 1 and
k ≥ 2.

Thus (by Theorem 5.3) these models have q different Gibbs measures for all sufficiently
large β.
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7 Discussion

Describing the set of all Gibbs distributions corresponding to a given Hamiltonian is one
of the main problems of statistical mechanics, but it has not yet been completely solved,
even for some rather simple Hamiltonians (see, e.g., [3, 8, 9]). The simplicity of the Cayley
tree allows describing a rather wide class of Gibbs measures for models without “good”
symmetries (see [15] and [28]) and with competing interactions (see, e.g., [19, 20]).

Note that even if all ground states have the same energy density, this does not imply that
all Gibbs measures (mentioned in Theorem 5.3) have the same free energy density.

Now we are going to give a discussion about the difference between what the results
are on trees, as opposed to amenable lattices. First difference is related to the SOS model
with m ≥ 2 spin values on Cayley trees. The results of [27] allow indicating the explicit
values of β for which there are many Gibbs measures. On the other hand, in view of the
results in [29] and in [27], it can be noted that the number of translation-invariant Gibbs
measures (for the SOS model on Cayley trees) is the same and is equal to three for m = 2
and m = 3. This demonstrates an essential distinction between the SOS models on Zd and
on �k because the number of translation-invariant measures in the case of Zd depends on the
parity of m (see [16]), namely, a unique Gibbs measure for even m and two periodic Gibbs
measure for odd m. Note that the SOS model can be treated as a natural generalization of the
Ising model (obtained for m = 2) and of the Blume–Capel model (obtained for m = 3). The
Blume-Capel model is an example with different-free-energy Gibbs measures. In particular,
the main result (Theorem 5.3) of the present paper (see also [24]) shows that (for the Cayley
tree case) the independence on m of the number of translation-invariant Gibbs measures is
true for any m ≥ 2.

Second difference: it is known (cf. [13]) that the Potts model with q ≥ 2 spin values
on Zd, d ≥ 2 undergoes a first-order phase transition at a certain transition temperature
Tcr = Tcr(q), provided q is large enough. Namely, the model (on Zd ) has q different Gibbs
measures for temperatures T < Tcr, q + 1 measures at T = Tcr and one measure for T > Tcr.
Note that [8, 18] for the ferromagnetic Potts model with q spin values on a Cayley tree for
any q ≥ 2 (even for q = 2, i.e., for the Ising model [3, 8]) there are q +1 distinct translation-
invariant Gibbs measures. Namely, there are two critical temperatures 0 < T ′

c < Tc such that
(i) for T ∈ (T ′

c , Tc] there are q + 1 extreme Gibbs measures. One of them, say μ0, (with
μ0(σ : σ(x) = i) = 1

q
, i = 1, . . . , q) is called unordered Gibbs measure; (ii) for T ∈ (0, T ′

c ]
the q + 1 Gibbs measures still exist but the measure μ0 is not extreme; (iii) for T > Tc there
is one Gibbs measure.

The next difference is given in Remark after (3.2): if a configuration σ satisfies U(σb) =
Umin for ∀b ∈ Mr then it is a ground state. Moreover for Hamiltonians on Zd it is well
known that a configuration is a ground state if and only if the condition (3.2) is satisfied (see
e.g. [30]). But such a fact is not true for Hamiltonians on the Cayley tree, since the tree is a
non-amenable graph. Assumption A1 gives some restriction i.e. it reduces consideration of
the model on the set of parameters where there are only translation-invariant ground states
(see Sect. 2.3). In Sect. 6 for some examples the corresponding set of parameters are given.
For example, Hamiltonian (6.1) satisfies Assumption A1 if the parameters J are taken from
J ∈ {J ∈ R2 : J1 < 0, J1 + 4J2 < 0}.
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